

SCIENCE + INSIGHT

A clinical laboratory providing innovative, accurate specialty testing since 1972.

Lab testing and supplements

BSEM Training Day
18th May 2018
Gilian Crowther ND/NT, CNHC reg.
Hallam Conference Centre

Agenda

Which labs and supplements are readily available in the UK and suitable for clinicians working in the field of ecological medicine?

Lab tests – Focus on the gut

- → Comprehensive gut profiles
- → Intestinal permeability
- → Gluten sensitivity/coeliac disease
- → Breath tests
- → Histamine intolerance/MCAS
- → Organic acids
- → Bacterial/viral infections

Supplement suppliers

Comprehensive gut profiles: Genova Diagnostics vs. Doctors Data (DD)

- Genova Diagnostics
- → Microbiology
- → Microbial ecology profile
- → GI Effects can also order "with helminths and ova"

- Doctors Data
- → Bacteriology profile
- → Microbiology profile
- \rightarrow CDSA + Parasitology x1
- \rightarrow CDSA + Parasitology x3

Genova Diagnostics: Microbiology - Stool

Microbiology

63 Zillicoa Street

Asheville, NC 28801
© Genova Diagnostics

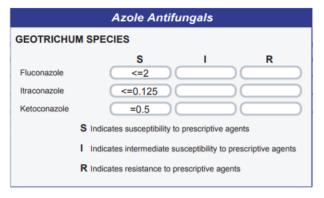
Patient: SAMPLE PATIENT

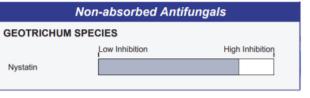
Age: Sex: MRN:

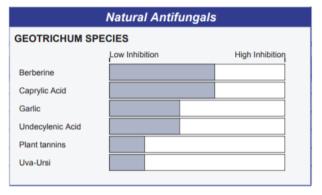
Microbiology Additional Tests (if ordered) Reference **Bacteriology** Inside Outside Range Beneficial Bacteria Not Ordered Negative Lactobacillus species Escherichia coli Campylobacter specific antigen Bifidobacterium Additional Bacteria Klebsiella pneumoniae NP (3+) Not Ordered Negative Mycology Enterohemorrhagic Escherichia coli Shiga-like Toxin Geotrichum species PP (3+) Human microflora is influenced by environmental factors and the competitive ecosystem of the organisms in the GI tract. Pathological significance should be based upon clinical symptoms and reproducibility of bacterial recovery. Microbiology Legend *NG *NG Non-Pathogen No Growth Potential Pathogen Pathogen Commentary

Commentary is provided to the practitioner for educational purposes, and should not be interpreted as diagnostic or

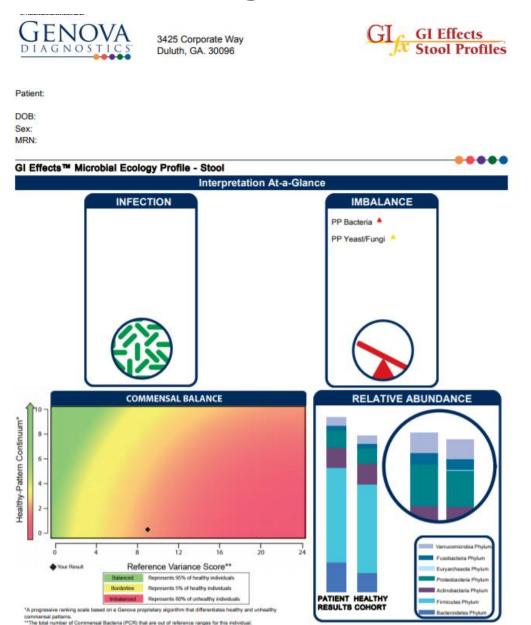
Low levels of E. coli, Lactobacilli and Bifidobacteria were noted in the stool. The "friendly bacteria", Lactobacilli and Bifidobacteria, are important for gastrointestinal function, as they are involved in vitamin synthesis, natural


treatment recommendations. Diagnosis and treatment decisions are the responsibility of the practitioner.

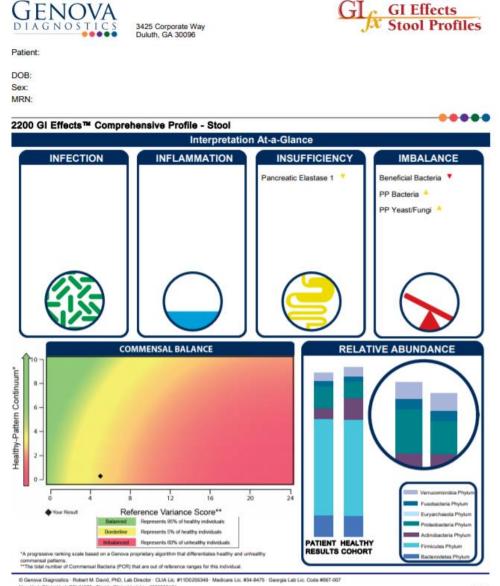

Analyses:


- Beneficial bacteria
- Imbalanced gut flora
- Additional bacteria
- Mycology
- Bacterial sensitivity

Prescriptive Agents									
KLEBSIELLA PNEUMONIAE									
S		1		R					
			\supset \subset	R					
S			\supset						
		T							
S Indicates susceptibility to prescriptive agents									
I Indicates intermediate susceptibility to prescriptive agents									
ates resistance	to prescr	iptive aç	gents						
	S S ates susceptibiliates intermedial	S S ates susceptibility to pres	S I S I ates susceptibility to prescriptive ates intermediate susceptibility t	S I S ates susceptibility to prescriptive agents					


	Natural Agents	;
KLEBSIELLA PN	IEUMONIAE	
	Low Inhibition	High Inhibition
Berberine		
Oregano		
Plant Tannins		
Uva-Ursi		

Genova Diagnostics: Microbial Ecology Profile - Stool


Commensal Bacteria

More than 95% of commensal gut organisms are anaerobic and are difficult to recover by traditional (aerobic) culture techniques.
Polymerase Chain Reaction (PCR) methodology identifies bacterial populations and is considered the standard for anaerobic bacteria assessment.

Culture via MALDI-TOF (Matrixassisted laser desorption/ ionization time-of-flight mass spectrometer) and DNA via PCR

- Bacterial and mycology screen
- Bacteria and mycology sensitivities
- Parasitology

Genova: GI Effects Comprehensive Profile – Stool (1/5)

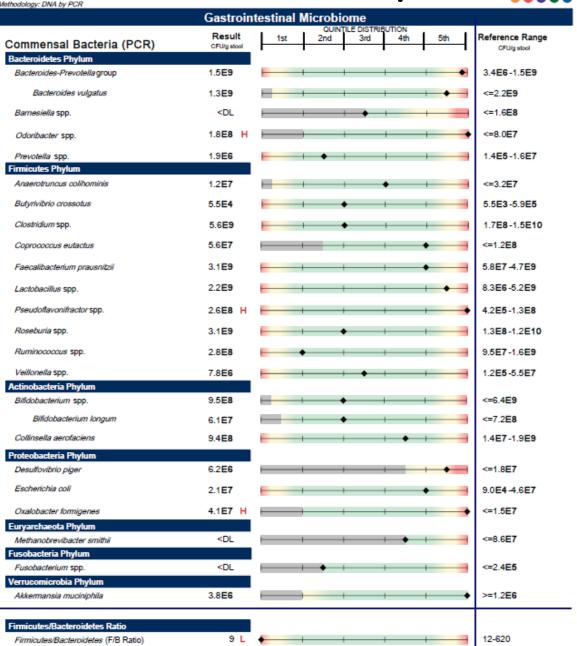
Most comprehensive:

- Digestion/absorption
- Gut inflammation/immunology
- Metabolic markers
- Commensal Bacteria
- Bacterial and mycology screen
- Bacteria and mycology sensitivities
- Parasitology

Genova: GI Effects Comprehensive Profile – Stool (2/5)

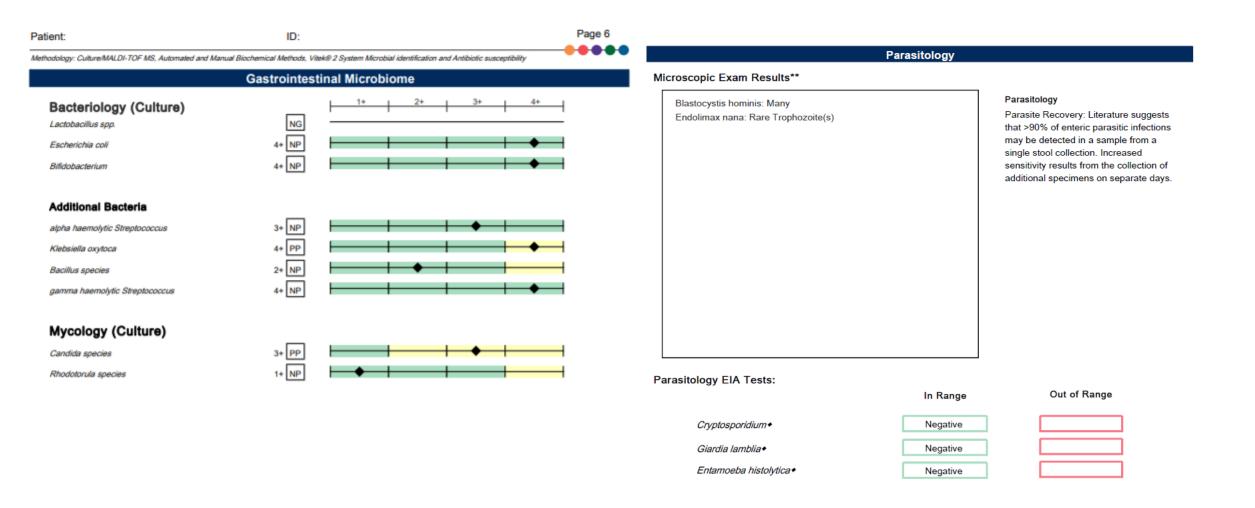
- Digestion/absorption
- Inflammation/immunology
- Metabolic markers

↓ pancreatic elastase: pancreatic insufficiency?

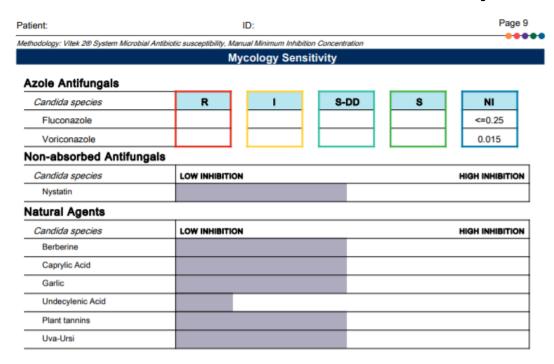

†products of protein breakdown: insufficient Hcl/pancreatic function?

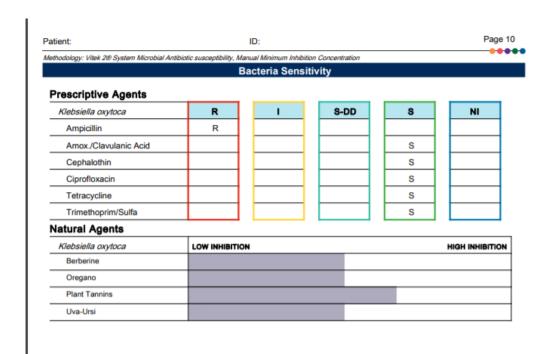
↑faecal fat: fat malabsorption

Calprotectin: marker for IBD; EPX sensitive marker of low-level inflammation Faecal SIgA key antibody in the membranes of gastrointestinal and respiratory tract: too low or too high?


SCFAs produced by gut bacteria fermenting resistant starch and fiber: maintain intestinal barrier, fuel for colonocytes
Beta-glucuronidase: how well is the gut moving toxins?

Genova: GI Effects Comprehensive Profile – Stool (3/5)




- Composition and relative abundance of gut organisms
- 24 genera/species mapped to
 7 major phyla

Genova: GI Effects Comprehensive Profile – Stool (4/5)

Genova: GI Effects Comprehensive Profile – Stool (5/5)

Additional Biomarkers Available:

Campylobacter

Clostridium difficile

Escherichia coli

Fecal Lactoferrin

Helicobacter pylori

Macro Exam for Helminths

Stool Zonulin

KOH Preparation for Yeast

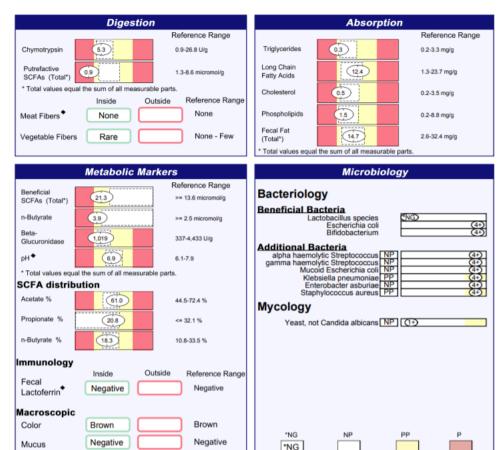
Full commentary and pathogenic organism chart (41 pages) available ...

https://gdx.net/core/supplemental-education-materials/Pathogenic-Organism-Chart.pdf

... and lots of teaching material:

https://www.gdx.net/files/clinicians/medicaleducation/previous-webinars/2017/the-gi-effects-advancedinterpretation--digging-deeper.pdf

Genova: CDSA (with parasitology if requested)


Comprehensive Digestive Stool Analysis

63 Zillicoa Street Asheville, NC 28801 © Genova Diagnostics

Patient: SAMPLE PATIENT

DOB: Sex: MRN:

- Less detail than in the GI Effects
- Only microbiology by culture, not PCR
- Lacks all the bacterial species mapped to 7 major phyla
- Bacterial and yeast sensitivity included

Doctors Data Bacteriology profile

LAB #: F000000-0000-0 **PATIENT: Sample Patient** ID: P0000000000 SEX: Female AGE: 50 **CLIENT #: 12345** DOCTOR: Doctor's Data, Inc. 3755 Illinois Ave. St. Charles, IL 60174 U.S.A.

Bacteriology Profile, stool

BACTERIOLOGY CULTURE						
Expected/Beneficial flora	Commensal (Imbalanced) flora	Dysbiotic flora				
4+ Bacteroides fragilis group	2+ Alpha hemolytic strep					
3+ Bifidobacterium spp.						
NG Escherichia coli						
2+ Lactobacillus spp.						
NG Enterococcus spp.						
3+ Clostridium spp.						
NG = No Growth						

BACTERIA INFORMATION

Expected /Beneficial bacteria make up a significant portion of the total microflora in a healthy & balanced GI tract. These beneficial bacteria have many health-protecting effects in the GI tract including manufacturing vitamins, fermenting fibers, digesting proteins and carbohydrates, and propagating anti tumor and anti-inflammatory factors,

Clostridia are prevalent flora in a healthy intestine. Clostridium spp. should be considered in the context of balance with other expected/beneficial flora. Absence of clostridia or over abundance relative to other expected/beneficial flora indicates bacterial imbalance. If C. difficile associated disease in suspected, a Comprehensive Clostridium culture or toxigenic C. difficile DNA test is recommended

Commensal (Imbalanced) bacteria are usually neither pathogenic nor beneficial to the host GI tract. Imbalances can occur when there are insufficier levels of beneficial bacteria and increased levels of commensal bacteria. Certain commensal bacteria are reported as dysbiotic at higher levels. Dysblotic bacteria consist of known pathogenic bacteria and those that have the potential to cause disease in the GI tract. They can be present due to

number of factors including: consumption of contaminated water or food, exposure to chemicals that are toxic to beneficial bacteria; the use of antibiotics oral contraceptives or other medications; poor fiber intake and high stress levels.

YEAST CULTURE Normal flora Dysbiotic flora not ordered MICROSCOPIC YEAST

Yeast in stool is expected at a level of none rare. A microscopic finding of yeast in stool of few, moderate, or many may be helpful in identifying potential yeast overgrowth, or nonviable or dietary yeast

Expected:

None - Rare

Yeast may normally be present in small quantities in the skin, mouth, and intestine. When investigating the presence of yeast, disparity may exist between culturing and microscopic examination. Yeast are not uniformly dispersed throughout the stool and this may lead to undetectable or low levels of yeast identified by microscopy, despite culture and identified yeast species. Conversely, microscopic examination may reveal a significant amount of yeast present but no viable yeast cultured. Yeast may not always survive transit through the intestines. Nonviable dietderived yeast may also be detected microscopically. Consideration of clinical intervention for yeast detected microscopically should be made in the context of other findings and presentation of symptoms.

Comments:

Result:

N/A

Date Collected: 07/10/2017 Date Received: 07/13/2017 Date Reported: 07/20/2017

* Aeromonas, Campylobacter, Plesiomonas, Salmonella, Shigella, Vibrio, Yersinia, & Edwardsiella tarda have been specifically tested for and found absent unless

No sensitivity, only bacteriology culture (MALDI-TOF) and – if requested - Mycology

Genova classes alpha and gamma haemolytic strep as NP, whereas DD always classes them in the "Imbalanced" (yellow) category

Explanation included with the test

Doctors Data Microbiology Profile

LAB #: F000000-0000-0 PATIENT: Sample Patient ID: P00000000 SEX: Male AGE: 3

CLIENT #: 12345 DOCTOR: Doctor's Data, Inc. 3755 Illinois Ave. St. Charles, IL 60174

Microbiology Profile, stool

BACTERIOLOGY CULTURE						
Expected/Beneficial flora	Commensal (Imbalanced) flora	Dysbiotic flora				
NG Bacteroides fragilis group	2+ Enterobacter cloacae	4+ Klebsiella oxytoca				
4+ Bifidobacterium spp.	3+ Gamma hemolytic strep					
4+ Escherichia coli	1+ Staphylococcus aureus					
3+ Lactobacillus spp.						
1+ Enterococcus spp.						
1+ Clostridium spp.						
NG = No Growth						

Expected /Beneficial bacteria make up a significant portion of the total microflors in a healthy & balanced GI tract. These beneficial bacteria have man health-protecting effects in the GI tract including manufacturing vitamins, fermenting fibers, digesting proteins and carbohydrates, and propagating antitumor and anti-inflammatory factors.

Clostridia are prevalent flora in a healthy intestine. Clostridium spp. should be considered in the context of balance with other expected/beneficial flora. Absence of clostridia or over abundance relative to other expected/beneficial flora indicates bacterial imbalance. If C. difficile associated disease is suspected, a Comprehensive Clostridium culture or toxigenic C. difficile DNA test is recommended.

Commensal (Imbalanced) bacteria are usually neither pathogenic nor beneficial to the host GI tract. Imbalances can occur when there are insufficient levels of beneficial bacteria and increased levels of commensal bacteria. Certain commensal bacteria are reported as dysbiotic at higher levels. Dysblotic bacteria consist of known pathogenic bacteria and those that have the potential to cause disease in the GI tract. They can be present due to a number of factors including: consumption of contaminated water or food, exposure to chemicals that are toxic to beneficial bacteria; the use of antibiotics,

YEAST CULTURE						
Normal flora	Dysbiotic flora					
+ Candida parapsilosis						
+ Candida rugosa						
+ Rhodotorula glutinis/mucilaginosa						

Expected:

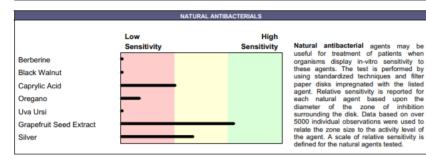
oral contraceptives or other medications; poor fiber intake and high stress levels.

None None - Rare

The microscopic finding of yeast in the stool is helpful in identifying whether there is proliferation of yeast. Rare yeast may be normal; however, yeast observed in higher mounts (few, moderate, or many) is abnormal

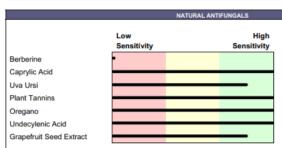
Yeast normally can be found in small quantities in the skin, mouth, intestine and mucocutaneous junctions. Overgrowth of yeast can infect virtually every organ system, leading to an extensive array of clinical manifestations. Fungal diarrhea is associated with broad-spectrum antibiotics of alterations of the patient's immune status. Symptoms may include abdominal pain, cramping and irritation. When investigating the presence of yeast, disparity may exist between culturing and microscopic examination. Yeast are not uniformly dispersed throughout the stool, this may lead to undetectable or low levels of yeast identified by microscopy, despite a cultured amount of yeast. Conversely, microscopic examination may reveal a significant amount of yeast present, but no yeast cultured. Yeast does not always survive transit through the intestines rendering it unviaible.

Comments


Date Collected: 11/29/2011 * Aeromonas, Campylobacter, Plesiomonas, Salmonella, Shigella, Vibrio, Yersinia, & Date Received: 12/1/2011 Edwardsiella tarda have been specifically tested for and found absent unless reported. Date Completed: 12/12/2011

LAB #: F000000-0000-0 **PATIENT: Sample Patient** ID: POOOOOOO SEX: Male AGE: 3

CLIENT #: 12345 DOCTOR: Doctor's Data, Inc. 3755 Illinois Ave. St. Charles, IL 60174


Bacterial Susceptibilities: Klebsiella oxytoca


	PRESCRIPTIVE AGENTS						
	Resistant	Intermediate	Susceptible	Susceptible res			
Amoxicillin-Clavulanic Acid			S	due to the back treated when the			
Ampicillin	R			the tested antimi			
Cefazolin			S	rates may be			
Ceftazidime			s	bacteria when agent is used.			
Ciprofloxacin			s	Resistant result not be inhibited			
Trimeth-sulfa			S	the tested antin			

ceptible results imply that an infection to the bacteria may be appropriately ted when the recommended dosage of tested antimicrobial agent is used. rmediate results imply that response

Yeast Susceptibilities: Rhodotorula glutinis/mucilaginosa

Natural antifungal agents may be useful for treatment of patients when organisms display in-vitro sensitivity to these agents. The test is performed by using standardized techniques and filter paper disks impregnated with the listed agent. Relative sensitivity is reported for each natural agent based upon the diameter of the zone of inhibition surrounding the disk. Data based on over 5000 individual observations were used to relate the zone size to the activity level of the agent. A scale of relative sensitivity is defined for the natural agents

COCCTOR'S DATA, INC. • ADDRESS: 3755 Illinois Avenue, St. Charles, IL 60174-2420 • CLIA ID NO. 1400646470 • MEDICARE PROVIDER NO. 148453

Doctors Data: CDSA with Parasitology x3 (1/2)

LAB #: F000000-0000-0 **PATIENT: Sample Patient** ID: P0000000000 SEX: Male AGE: 37 **CLIENT #: 12345** DOCTOR: Doctor's Data, Inc. 3755 Illinois Ave. St. Charles, IL 60174 U.S.A.

Comprehensive Stool Analysis / Parasitology x3

BACTERIOLOGY CULTURE Expected/Beneficial flora Commensal (Imbalanced) flora Dysbiotic flora 4+ Bacteroides fragilis group 2+ Alpha hemolytic strep NG Bifidobacterium spp. 1+ Beta strep, not group A or B 4+ Escherichia coli 2+ Hemolytic Escherichia coli 3+ Lactobacillus spp. 1+ Enterococcus spp 4+ Clostridium spp. NG = No Growth

Expected /Beneficial bacteria make up a significant portion of the total microflora in a healthy & balanced GI tract. These beneficial bacteria have may health-protecting effects in the GI tract including manufacturing vitamins, fermenting fibers, digesting proteins and carbohydrates, and propagating antitumor and anti-inflammatory factors.

Clostridia are prevalent flora in a healthy intestine. Clostridium spp, should be considered in the context of balance with other expected/beneficial flora. Absence of clostridia or over abundance relative to other expected/beneficial flora indicates bacterial imbalance. If C. difficile associated disease is suspected, a Comprehensive Clostridium culture or toxigenic C. difficile DNA test is recommended.

Commensal (Imbalanced) bacteria are usually neither pathogenic nor beneficial to the host GI tract. Imbalances can occur when there are insufficient levels of beneficial bacteria and increased levels of commensal bacteria. Certain commensal bacteria are reported as dysbiotic at higher levels.

Dysbiotic bacteria consist of known pathogenic bacteria and those that have the potential to cause disease in the Gi tract. They can be present due to a number of factors including: consumption of contaminated water or food, exposure to chemicals that are toxic to beneficial bacteria; the use of antibiotics oral contraceptives or other medications; poor fiber intake and high stress levels.

YEAST CULTURE						
Normal flora	Dysbiotic flora					
+ Rhodotorula mucilaginosa						

Expected: Result: Many None - Rare Yeast in stool is expected at a level of none rare. A microscopic finding of yeast in stool of few, moderate, or many may be helpful in identifying potential yeast overgrowth, or not

Yeast may normally be present in small quantities in the skin, mouth, and intestine. When investigating the presence of yeast, disparity may exist between culturing and microscopic examination. Yeast are not uniformly dispersed throughout the stool and this may lead to undetectable or low levels of yeast identified by microscopy, despite culture and identified yeast species. Conversely, microscopic examination may reveal a significant amount of yeast present but to viable yeast cultured. Yeast may not always survive transit through the intestines. Nonviable dietderived yeast may also be detected microscopically. Consideration of clinical intervention for yeast detected microscopically should be made in the context of other findings and presentation of symptoms.

viable or dietary yeast Comments:

Date Collected: 06/30/2017 Date Received: 07/03/2017 Date Reported: 07/17/2017

* Aeromonas, Campylobacter, Plesiomonas, Salmonella, Shigella, Vibrio, Yersinia, & Edwardsiella tarda have been specifically tested for and found absent unless

6DOCTOR'S DATA, INC. • ADDRESS: 3755 Illinois Avenue, St. Charles, IL 60174-2420 • MED DIR: Erio Roth, MD • CLIA ID NO: 14D0646470

Sample 3

Many Yeast

None Ova or Parasites

LAB #: F000000-0000-0 PATIENT: Sample Patient ID: P0000000000 SEX: Male DOB

CLIENT #: 12345 DOCTOR: Doctor's Data, Inc. 3755 Illinois Ave. St. Charles, IL 60174 U.S.A.

Comprehensive Stool Analysis / Parasitology x3

PARASITOLOGY/MICROSCOPY PARASITOLOGY INFORMATION Intestinal parasites are abnormal inhabitants of the gastrointestinal tract that Sample 1 have the potential to cause damage to their host. The presence of any parasite None Ova or Parasites within the intestine generally confirms that the patient has acquired the Rare Yeast organism through fecal-oral contamination. Damage to the host includes parasitic burden, migration, blockage and pressure. Immunologic inflammation, hypersensitivity reactions and cytotoxicity also play a large role in the morbidity of these diseases. The infective dose often relates to severity of the disease and repeat encounters can be additive. There are two main classes of intestinal parasites, they include protozoa and helminths. The protozoa typically have two stages; the trophozoite stage that is the metabolically active, invasive stage and the cyst stage, which is the Sample 2 vegetative inactive form resistant to unfavorable environmental conditions outside the human host. Helminths are large, multicellular organisms. Like None Ova or Parasites protozoa, helminths can be either free-living or parasitic in nature. In their adult Few Yeast form, helminths cannot multiply in humans. In general, acute manifestations of parasitic infection may involve diarrhea with

or without mucus and or blood, fever, nausea, or abdominal pain. However these symptoms do not always occur. Consequently, parasitic infections may not be diagnosed or eradicated. If left untreated, chronic parasitic infections can cause damage to the intestinal lining and can be an unsuspected cause of illness and fatigue. Chronic parasitic infections can also be associated with increased intestinal permeability, irritable bowel syndrome, irregular bowel movements, malabsorption, gastritis or indigestion, skin disorders, joint pain, allergic reactions, and decreased immune function.

In some instances, parasites may enter the circulation and travel to various organs causing severe organ diseases such as liver abscesses and cysticercosis. In addition, some larval migration can cause pneumonia and in rare cases hyper infection syndrome with large numbers of larvae being produced and found in every tissue of the body.

One negative parasitology x1 specimen does not rule out the possibility of parasitic disease, parasitology x3 is recommended. This test is not designed to detect Cyclospora cayetanensis or Microsproridia spp.

Most comprehensive DD GI test Clearer pointers to imbalanced flora MALDI-TOF only **Tests for Crypto**sporidium (not an add-on)

GIARDIA/CRYPTOSPORIDIUM IMMUNOASSAY

Within Outside Reference Range Giardia duodenalis Neg Cryptosporidium

Giardia duodenalis (AKA intestinalis and lamblia) is a protozoan that infects the small intestine and is passed in stool and spread by the fecal-oral route. Waterborne transmission is the major source of giardiasis.

Cryptosporidium is a coccidian protozoa that can be spread from direct person-to-person contact or waterborne transmission.

Doctors Data: CDSA with Parasitology x3 (2/2)

Includes stool chemistry (can also be done separately)

LAB #: F000000-0000-0 PATIENT: Sample Patient ID: P0000000000 SEX: Male DOB: AGE: CLIENT #: 12345 DOCTOR: Doctor's Data, Inc. 3755 Illinois Ave. St. Charles. IL 60174 U.S.A

Comprehensive Stool Analysis / Parasitology x3

	DIGESTION /ABSORPTION							
	Within	Outside	Reference Range	Elastase findings can be used for the diagnosis or the exclusion of exocrine pancreatic				
Elastase		182	> 200 μg/mL	insufficiency. Correlations between low levels and chronic pancreatitis and cancer have been reported. Fat Stain: Microscopic determination				
Fat Stain	None		None - Mod	of fecal fat using Sudan IV staining is a qualitative procedure utilized to assess fat absorption and to detect steatorrhea. Muscle				
Muscle fibers	None		None - Rare	fibers in the stool are an indicator of incomplete digestion. Bloating, flatulence, feelings of "fullness" may be associated with increase in				
Vegetable fibers	Rare		None - Few	muscle fibers. Vegetable fibers in the stool may be indicative of inadequate chewing, or eating "on the run". Carbohydrates : The presence of				
Carbohydrates	Neg		Neg	reducing substances in stool specimens can indicate carbohydrate malabsorption.				

			INFLAMMATION	
	Within	Outside	Reference Range	Lactoferrin and Calprotectin are reliable markers for differentiating organic inflammation
Lactoferrin	< 0.5		< 7.3 μg/mL	(IBD) from function symptoms (IBS) and for management of IBD. Monitoring levels of fecal lactoferrin and calprotectin can play an essential
Calprotectin*	< 10		<= 50 μg/g	role in determining the effectiveness of therapy, are good predictors of IBD remission, and can indicate a low risk of relapse. Lysozyme* is an
Lysozyme*	174		<= 600 ng/mL	enzyme secreted at the site of inflammation in the GI tract and elevated levels have been identified in IBD patients. White Blood Cells
White Blood Cells	None		None - Rare	(WBC) and Mucus in the stool can occur with bacterial and parasitic infections, with mucosal irritation, and inflammatory bowel diseases such
Mucus	Neg		Neg	as Crohn's disease or ulcerative colitis.

			IMMUNOLOGY	
	Within	Outside	Reference Range	Secretory IgA* (slgA) is secreted by mucosal tissue and represents the first line of defense of
Secretory IgA*		19.6	51 - 204 mg/dL	the GI mucosa and is central to the normal function of the GI tract as an immune barrier. Elevated levels of sIgA have been associated with an upregulated immune response.

LAB #: F000000-0000-0
PATIENT: Sample Patient
ID: P0000000000
SEX: Male
DOB: AG

AGE: 37

CLIENT #: 12345 DOCTOR: Doctor's Data, Inc. 3755 Illinois Ave. St. Charles, IL 60174 U.S.A.

Comprehensive Stool Analysis / Parasitology x3

Short chain fatty acids (SCFAs): SCFAs are the end product of the bacterial fermentation process of dietary fiber by beneficial flora in the gut and play an important role in the health of the GI as well as protecting against intestinal dysbiosis. Lactobacilli and bifidobacteria produce large amounts of short chain fatty acids, which decrease the pH of the intestines and therefore make the environment unsuitable for pathogens. including bacteria and yeast. Studies have shown that SCFAs have numerous implications in maintaining gut physiology. SCFAs decrease inflammation, stimulate healing, and contribute to normal cell metabolism and differentiation. Levels of Butyrate and Total SCFA in mg/mL are important for assessing overall SCFA production, and are reflective of beneficial flora levels and/or adequate fiber intake.

INTESTINAL HEALTH MARKERS					
	Within	Outside	Reference Range	Red Blood Cells (RBC) in the stool may be associated with a parasitic or bacterial infection,	
Red Blood Cells	None		None - Rare	or an inflammatory bowel condition such as ulcerative colitis. Colorectal cancer, anal fistulas, and hemorrhoids should also be ruled out.	
pH	6.4		6 - 7.8	pH: Fecal pH is largely dependent on the fermentation of fiber by the beneficial flora of the gut.	
Occult Blood	Neg		Neg	Occult blood: A positive occult blood indicates the presence of free hemoglobin found in the stool, which is released when red blood cells are lysed.	

		MACROSCOPIC APPEA	RANCE
	Appearance	Expected	Color: 5 pigments introduce
Color	Brown	Brown	liver. W changes harmless
Consistency	Soft	Formed/Soft	or dieta normally should b
			can vary

Color: Stool is normally brown because of pigments formed by bacteria acting on bile introduced into the digestive system from the liver. While certain conditions can cause changes in stool color, many changes are harmless and are caused by pigments in foods or dietary supplements. Consistency: Stool normally contains about 75% water and ideally should be formed and soft. Stool consistency can vary based upon transit time and water absorption.

Covers:

Digestion/absorption
Inflammation/immunity
Metabolic markers
in a similar manner

Also includes bacterial/mycology sensitivity

No bacterial species mapped to major phyla No PCR contrast for NG species

Alpharetta GA 30005

877-485-5336

GI-MAP TM DNA Stool Analysis

5895 Shiloh Rd, Ste 101 DOB: 7/11/1981

Patient: Ima Sample Collected: 2/10/2018

Accession: 20180212-0001 Received: 2/12/2018

Completed:

077-465-5550	Ordered by:	Diane Farhi, MD	
Pathogens			
Bacterial Pathogens	Result		Normal
Campylobacter	<dl< td=""><td></td><td><1.00e3</td></dl<>		<1.00e3
C. difficile, Toxin A	1.21e5	High	<1.00e3
C. difficile, Toxin B	2.27e5	High	<1.00e3
Enterohemorrhagic E. coli	<dl< td=""><td></td><td><1.00e3</td></dl<>		<1.00e3
E. coli O157	8.60e0		<1.00e3
Enteroinvasive E. coli/Shigella	<dl< td=""><td></td><td><1.00e2</td></dl<>		<1.00e2
Enterotoxigenic E. coli LT/ST	<dl< td=""><td></td><td><1.00e3</td></dl<>		<1.00e3
Shiga-like Toxin E. coli stx1	<dl< td=""><td></td><td><1.00e3</td></dl<>		<1.00e3
Shiga-like Toxin E. coli stx2	<dl< td=""><td></td><td><1.00e3</td></dl<>		<1.00e3
Salmonella	<dl< td=""><td></td><td><1.00e4</td></dl<>		<1.00e4
Vibrio cholerae	<dl< td=""><td></td><td><1.00e5</td></dl<>		<1.00e5
Yersinia enterococlitica	4.46e1		<1.00e5
Parasitic Pathogens	Result		Normal
Cryptosporidium	<dl< td=""><td></td><td><1.00e6</td></dl<>		<1.00e6
Entamoeba histolytica	<dl< td=""><td></td><td><1.00e4</td></dl<>		<1.00e4
Giardia	<dl< td=""><td></td><td><5.00e3</td></dl<>		<5.00e3
Viral Pathogens	Result		Normal
Adenovirus 40/41	<dl< td=""><td></td><td><1.00e10</td></dl<>		<1.00e10
Norovirus GI/II	<dl< td=""><td></td><td><1.00e7</td></dl<>		<1.00e7
H. pylori			
	Result		Normal
Helicobacter pylori	2.9e3	High	<1.0e3
Virulence Factor, babA	Positive		Negative
Virulence Factor, cagA	Positive		Negative
Virulence Factor, dupA	Negative		Negative
Virulence Factor, iceA	Negative		Negative
Virulence Factor, OipA	Negative		Negative
Virulence Factor, vacA	Negative		Negative
Virulence Factor, virB	Positive		Negative
Virulence Factor, virD	Positive		Negative

Normal Bacterial Flora	Popult		Normal
Bacteroides fragilis	Result		1.60e9 - 2.50e11
Bifidobacterium spp.	2.4e10		>6.70e7
Enterococcus spp.	4.9e7		1.9e5 - 2.00e8
Escherichia spp.	6.1e5	Low	3.70e6 - 3.80e9
Lactobacillus spp.	3.7e4	Low	8.6e5 - 6.20e8
Clostridium spp.	6.25e6	High	1.20e3 - 1.00e6
Enterobacter spp.	9.16e6	riigii	1.00e6 - 5.00e7
Phyla Microbiota	Result		Normal
Bacteroidetes	4.33e11		1.00e10 - 5.00e11
Firmicutes	1.25e11	High	1.00e9 - 5.00e10
Firmicutes:Bacteroidetes Ratio	0.29		<1.00
Opportunistic Bacteria			1.00
Additional Dysbiotic/Overgrowth Bacteria	Result		Normal
Bacillus spp.	8.30e4		<1.50e5
Enterococcus faecalis	2.56e3		<1.00e4
Enterococcus faecium	1.11e3		<1.00e4
Morganella spp.	<dl< td=""><td></td><td><1.00e3</td></dl<>		<1.00e3
Pseudomonas spp.	7.37e4	High	<1.00e4
Pseudomonas aeruginosa	<dl< td=""><td></td><td><5.00e2</td></dl<>		<5.00e2
Staphylococcus spp.	1.93e4	High	<1.00e4
Staphylococcus aureus	1.23e1		<5.00e2
Streptococcus spp.	1.34e3	High	<1.00e3
Potential Autoimmune Triggers	Result		Normal
Citrobacter spp.	<dl< td=""><td></td><td><5.00e6</td></dl<>		<5.00e6
Citrobacter freundii	<dl< td=""><td></td><td><5.00e5</td></dl<>		<5.00e5
Klelbsiella spp.	2.48e4	High	<5.00e3
Klebsiella pneumoniae	1.41e4		<5.00e4
Mycobacterium tuberculosis (avium)	<dl< td=""><td></td><td><5.00e3</td></dl<>		<5.00e3
Prevotella copri	<dl< td=""><td></td><td><1.00e7</td></dl<>		<1.00e7
Proteus spp.	<dl< td=""><td></td><td><5.00e4</td></dl<>		<5.00e4
Proteus mirabilis	<dl< td=""><td></td><td><1.00e3</td></dl<>		<1.00e3
Fungi/Yeast			
	Result		Normal
Candida spp.	<dl< td=""><td></td><td><5.00e3</td></dl<>		<5.00e3
Candida albicans	<dl< td=""><td></td><td><5.00e2</td></dl<>		<5.00e2
Geotrichum spp.	<dl< td=""><td></td><td><3.00e2</td></dl<>		<3.00e2
Microsporidium spp.	<dl< td=""><td></td><td><5.00e3</td></dl<>		<5.00e3
Rodotorula spp.	<dl< td=""><td></td><td><1.00e3</td></dl<>		<1.00e3

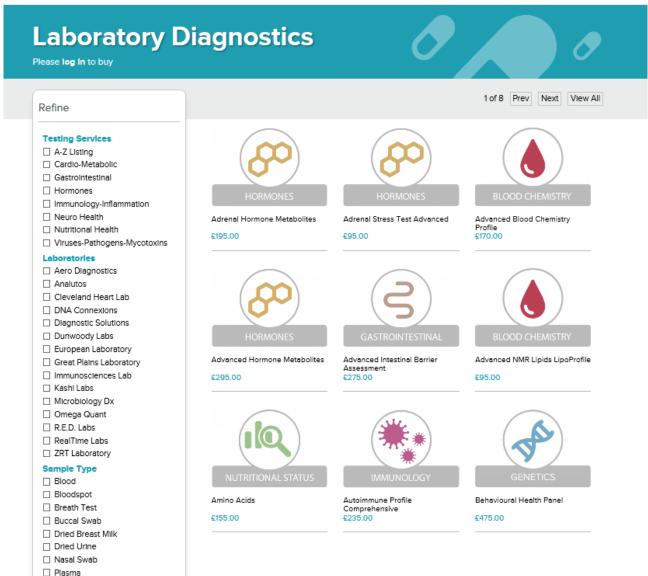
GI Map – additionally: parasites, worms, beta glucuronidase, immune markers, as well as antibiotic resistance genes

Viruses				
	Result		Normal	
Cytomegalovirus	<dl< td=""><td colspan="3"><dl< td=""></dl<></td></dl<>	<dl< td=""></dl<>		
Epstein Barr Virus	<dl< td=""><td colspan="2"><dl< td=""></dl<></td></dl<>	<dl< td=""></dl<>		
Parasites				
Protozoa	Result		Normal	
Blastocystis hominis	<dl< td=""><td></td><td><2.00e3</td></dl<>		<2.00e3	
Chilomastix mesnelli	<dl< td=""><td></td><td><1.00e5</td></dl<>		<1.00e5	
Cyclospora spp.	<dl< td=""><td></td><td><5.00e4</td></dl<>		<5.00e4	
Dientamoeba fragilis	<dl< td=""><td></td><td><1.00e5</td></dl<>		<1.00e5	
Endolimax nana	<dl< td=""><td></td><td><1.00e4</td></dl<>		<1.00e4	
Entamoeba coli	<dl< td=""><td></td><td><5.00e6</td></dl<>		<5.00e6	
Pentatrichomonas hominis	<dl< td=""><td></td><td><1.00e2</td></dl<>		<1.00e2	
Worms	Result		Normal	
Ancylostoma duodenale	Not Detected		Not Detected	
Ascaris lumbricoides	Not Detected		Not Detected	
Necator americanus	Not Detected		Not Detected	
Trichuris trichiura	Not Detected		Not Detected	
Taenia spp.	Not Detected		Not Detected	
Intestinal Health				
Digestion	Result		Normal	
Elastase-1	388		>200 ug/g	
Steatocrit	6		<15 %	
GI Markers	Result		Normal	
b-Glucuronidase	2584	High	<2486 U/mL	
Fecal Occult Blood	Negative		Negative	
Immune Response	Result		Normal	
Secretory IgA	1873		510 - 2010 ug/g	
Anti-gliadin IgA	15		0 - 157 U/L	
Inflammation	Result		Normal	
Calprotectin	22		<50 ug/g	
Add-on Test	Result		Normal	
Zonulin	186.4	High	<107 ng/g	

Helicobacter		Result			Expected Result
Clarithromycin		Positive			Absent
A2142C	Absent	A2142G	Absent	A2143G	Present
Fluoroquinolones		Negative			Absent
gyrA N87K	Absent	gyrA D91N	Absent	gyrA D91G	Absent
gyrB S479N	Absent	gyrB R484K	Absent		
Antibiotic Resista	ince Genes, gene	otypes			
Jniversal Microbi	ota Resistance C	Senes			
o-lactamase		Positive			Absent
TEM-70	Absence	СТХМЗ	Presence	SHV-24	Presence
VEB-1	Absence	OXA-30	Absence	CTXM35	Absence
toho-3	Absence	CTXM63	Absence	PER-1	Absence
PER-2	Presence	GES-3	Absence	NDM-1	Absence
luoroquinolones	;	Negative			Absent
qnrA2	Absence	qnrB	Absence		
Macrolides		Positive			Absent
ermA	Absence	ermB	Presence	ermC	Absence
mefE	Absence				
/ancomycin		Negative			Absent
vanA1	Absence	vanA2	Absence	vanB	Absence
vanC	Absence				

Invivo Clinical

☐ Saliva


About us Products & Services News Invivo Education Contact Mailing List

INVIV

Invivo Clinical Ltd

+44 (0)3332412997

Invivo Clinical Ltd., Unit 1
The New Warehouse,
Libby's Drive,
Stroud,
GL5 1RN

Intestinal permeability

- Biolab
- Genova
- Doctors Data
- Cyrex

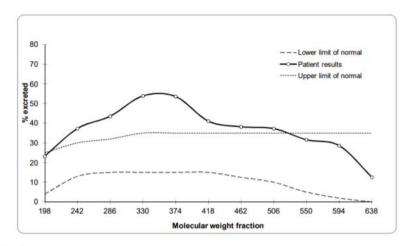
Biolab – Intestinal Permeability Profile

Biolab Medical Unit

9 Weymouth Street, London W1W 6DB, UK

Tel: (44) 020 7636-5959/5905 Fax: 020 7580-3910 E-mail: info@biolab.co.uk Internet: www.biolab.co.uk

Biolab reference: XXXX/YYYY/F15


Date: 02/06/2015 Clinician's reference: Patient: MRS SAMPLE PATIEN

Age: 48
Sex: Female

Referred by:

Intestinal Permeability Profile Using polyethylene glycol (PEG 400)

				Recovery in urine (6 hour collection)			
Fraction	Molecular weight	Dose (mg)	mg	%	Reference range		
1	198	25.5	5.9	23.2	4.0 - 25.0		
2	242	86.7	32.3	37.3	13.0 - 30.0		
3	286	185.1	80.7	43.6	15.0 - 32.0		
4	330	363.6	196.0	53.9	15.0 - 35.0		
5	374	503.1	269.7	53.6	15.0 - 35.0		
6	418	542.1	222.8	41.1	15.0 - 35.0		
7	462	479.4	183.1	38.2	12.5 - 35.0		
8	506	360.6	134.5	37.3	10.0 - 35.0		
9	550	246.0	77.7	31.6	5.0 - 35.0		
10	594	138.9	39.7	28.6	2.0 - 35.0		
11	638	68.7	8.6	12.5	0.0 - 35.0		
	TO	TAL: 3000	1251.1				

The PEG (polyethylene glycol) used contains a mixture of inert, water-soluble molecules of 11 different sizes, displaying decreasing mucosal transport with increasing molecular size.

If the villus or its enterocytes is damaged or irritated, the gaps between the cells become disrupted, increasing the size of the molecules that can be absorbed.

The results show the increase in gut permeability by individual molecular weight fraction.

Comment:

Genova and Doctors Data

63 Zillicoa Street

Asheville, NC 28801

C Genova Diagnostics

Intestinal Permeability (Urine)

Patient: MALE TEST

DOB: February 02, 1991

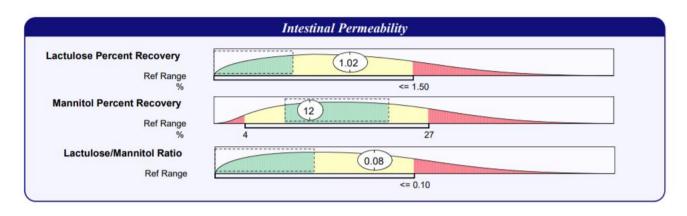
Sex: M

MRN: 0001558065

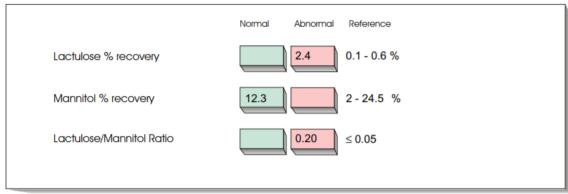
Order Number: K8260251 Completed: April 26, 2017

Received: April 26, 2017 Collected: April 26, 2017 Test Office
Test (PROD) Test MD, DO, ND

84 Peachtree Rd Asheville, NC 28803



LAB#: F000000-0000-0 PATIENT: Sample Patient


SEX: Female AGE: 42 CLIENT#: 12345 DOCTOR: Doctor's Data, Inc.

Doctor's Data, Inc. 3755 Illinois Ave. St. Charles, IL 60174

Lactulose/Mannitol Challenge Test

Lactulose should not be metabolised in a healthy gut, and so should be excreted in the urine after 6hrs. If the test shows that more is taken up than normal, this indicates gut permeability.

Comments

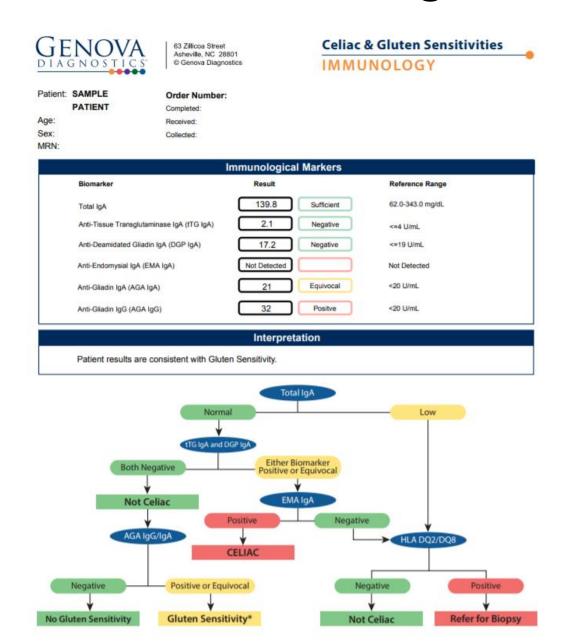
Lactulose, a dissaccharide, normally penetrates poorly through the gastrointestinal barrier. An elevated level of Lactulose is indicative of hyper-permeability.

Mannitol, a monosaccharide, is readily absorbed and serves as a marker of transcellular uptake. A low percent recovery of Mannitol is indicative of malabsorption.

A high Lactulose/Mannitol ratio indicates an increase in gut permeability.

Cyrex Intestinal Antigenic Permeability Screen

TEST		RESULT		
Array 2 – Intestinal Antigenic Permeability Screen	IN RANGE (Normal)	EQUIVOCAL*	OUT OF RANGE	REFERENCE (ELISA Index)
Actomyosin IgA **	19.57			0.0-20
Occludin/Zonulin IgG	0.64			0.2-1.5
Occludin/Zonulin IgA	1.17			0.1-1.8
Occludin/Zonulin IgM	0.56			0.1-2.1
Lipopolysaccharides (LPS) IgG			2.49	0.1-1.6
Lipopolysaccharides (LPS) IgA			3.83	0.1-1.8
Lipopolysaccharides (LPS) IgM	0.96			0.1-2.0

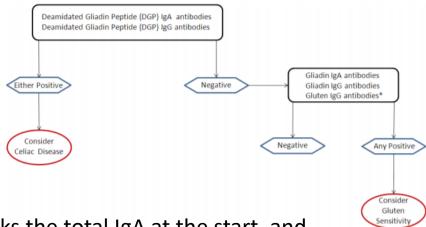

This measuring antibodies to barrier proteins. It can therefore detect barrier damage long before there is dysregulation in absorptive function It identifies antibodies against:

- 1) the tight junction proteins (occludin and zonulin)
- 2) the actomyosin network (a protein complex that maintains the plasticity of tight junctions)
- 3) an immune response to bacterial endotoxins –lipopolysaccharides

Gluten sensitivity/coeliac disease

- Genova Diagnostics
- Doctors Data
- Cyrex

Coeliac and gluten sensitivity: Genova/DD


LAB #: B000000-0000-0
PATIENT: Sample Patient
ID: P000000000
SEX: Male
DOB: 01/01/1962 AGE: 52

CLIENT #: 12345 DOCTOR: Doctor's Data, Inc. 3755 Illinois Ave. St. Charles, IL 60174 U.S.A.

Celiac & Gluten Sensitivity; blood spot

ANTIBODIES						
	RESUL	T/UNIT	REFERENCE INTERVAL	NEG	WEAK POS	POSITIVE
Deamidated Gliadin Peptide (DGP) IgA	< 1.9	U	< 20			
Deamidated Gliadin Peptide (DGP) IgG	< 5.2	U	< 20			
Gliadin IgA	34	U	< 20			
Gliadin IgG	25	U	< 20			
Gluten IgG*	9.6	μg/mL	< 3			

Celiac Disease/Gluten Sensitivity Cascade

DD lacks the total IgA at the start, and EMA IgA
If other markers –ve, HLA DQ2/DQ8
in the Genova panel

Gene reports can back this up

And sometimes prevent the need for a biopsy

Celiac Disease/Gluten Intolerance							
SNP Name	Risk Allele	Your Alleles	Your Results				
FOLR1 G-20A	Α	GG	-/-				
FOLR2 G-1316A	Α	AG	+/-				
FOLR3 A3771G	G	AA	-/-				
HLA	G	GG	+/+				
HLA DQA1	T	CC	-/-				

Cyrex Array 3 Wheat/Gluten Proteome Autoimmunity

TEST		RE	ESULT	
Array 3 – Wheat/Gluten Proteome Reactivity & Autoimmunity	IN RANGE (Normal)	EQUIVOCAL*	OUT OF RANGE	REFERENCE (ELISA Index)
Wheat IgG	0.59			0.3-1.5
Wheat IgA		0.95		0.1-1.2
Wheat Germ Agglutinin IgG	0.70			0.4-1.3
Wheat Germ Agglutinin IgA		0.90		0.2-1.1
Native & Deamidated Gliadin 33 IgG	0.21			0.2-1.2
Native & Deamidated Gliadin 33 IgA		1.07		0.1-1.1
Alpha Gliadin 17-mer IgG	0.63			0.1-1.5
Alpha Gliadin 17-mer IgA			1.35	0.1-1.1
Gamma Gliadin 15-mer IgG	0.97			0.5-1.5
Gamma Gliadin 15-mer IgA	0.46			0.1-1.0
Omega Gliadin 17-mer IgG	0.43			0.3-1.2
Omega Gliadin 17-mer IgA	0.90			0.1-1.2
Glutenin 21-mer IgG	0.76			0.1-1.5
Glutenin 21-mer IgA		1.23		0.1-1.3
Gluteomorphin + Prodynorphin IgG	0.56			0.3-1.2
Gluteomorphin + Prodynorphin IgA		1.12		0.1-1.2
Gliadin-Transglutaminase Complex IgG			1.54	0.3-1.4
Gliadin-Transglutaminase Complex IgA	1.04			0.2-1.5
Transglutaminase-2 lgG	0.75			0.3-1.6
Transglutaminase-2 IgA	1.19			0.1-1.6
Transglutaminase-3 IgG	0.65			0.2-1.6
Transglutaminase-3 IgA			1.75	0.1-1.5
Transglutaminase-6 IgG	1.09			0.2-1.5
Transglutaminase-6 IgA		1.34		0.1-1.5

Cyrex available through Regenerus Laboratories*

It also has been discovered that wheat is made up of more than 100 different components that can cause a reaction, not just one (gliadin).

Until now testing for Gluten Sensitivity has only been against one of those components, alpha gliadin. Through extensive research Cyrex pinpointed the twelve components of wheat that most often provoke an immune response.

Also screens for antibodies to the opioids produced from wheat called Gluteomorphins and Prodynorphins.

^{*} Founded by Dr. Vojdani; gluten needs to be consumed for gluten sensitivity tests to be accurate

Regenerus Laboratories

http://regeneruslabs.com/page/homepage

Regenerus Laboratories Aero 14, Kings Mill Lane Redhill Surrey RH15JY

02037500870 info@regeneruslabs.com

Welcome to Regenerus Laboratories, the Dispensary for Advanced Diagnostics Tests. We provide more than 250 different tests to the doorstep of health professionals and their patients across the UK and throughout Europe.

Breath tests

- Small intestinal bacterial overgrowth (SIBO)
- Lactose
- Fructose

Breath test: SIBO

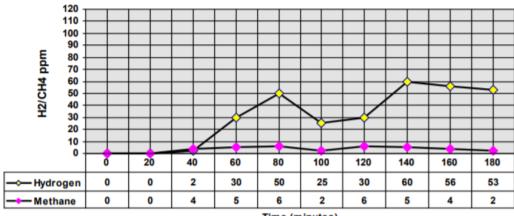
Biolab Medical Unit

9 Weymouth Street, London W1W 6DB, England

Telephone: (+44) 020 7636-5959/5905 Fax: (+44) 020 7580-3910 E-mail: info@biolab.co.uk Internet: www.biolab.co.uk

Hydrogen Breath Test using Lactulose

Reference: NAOD/ACFE/A12 Date of birth 01/01/1950


Patient: Test Patient Sex: Male

Doctor: **Dr......** Sample date: **03/01/2012**

Protocol: 10gm of lactulose diluted in 200ml of water.

Method: Hydrogen and methane values measured every 20 minutes for 180 minutes

Basal levels: Hydrogen = 0 ppm Methane = 0 ppm

Time (minutes)

The increase of breath hydrogen levels to greater than 20ppm above baseline in the first 90 minutes of the study is suggestive of small intestinal bacterial overgrowth. (Reference 2017 North American consensus: Ali Rezaie Et Al. Hydrogen and methane based breath testing in gastrointestinal disorders: The North American consensus. American journal of gastroenterology 2017; 112:775-784)

Comments:

Results suggest small intestinal bacterial overgrowth (SIBO)

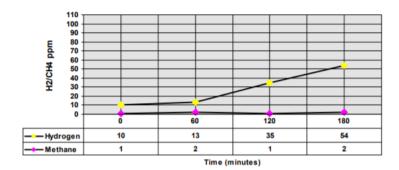
Breath tests: Lactose/fructose

Biolab Medical Unit

9 Weymouth Street, London W1W 6DB, England
Telephone: (+44) 020 7636-5959/5905 Fax: (+44) 020 7580-3910 E-mail: info@biolab.co.uk Internet: www.biolab.co.uk

Hydrogen Breath Test using Lactose

 Reference: NKJO/SDAV/A12
 Date of birth
 03-May-78


 Patient:
 Test Patient
 Sex:
 Female

 Doctor:
 Dr......
 Sample date:
 03-Jan-12

Protocol: 50gm of lactose diluted in 200ml of water.

Method: Hydrogen and methane values measured every 60 minutes for 180 minutes.

Basal levels: Hydrogen = 10 ppm Methane = 1 ppm

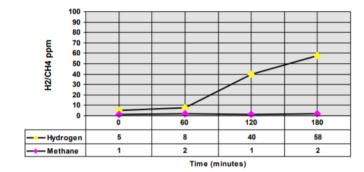
Biolab Medical Unit

9 Weymouth Street, London W1W 6DB, England

Telephone: (+44) 020 7636-5959/5905 Fax: (+44) 020 7580-3910 E-mail: info@biolab.co.uk Internet: www.biolab.co.uk

Hydrogen Breath Test using Fructose

 Reference: NKJO/SDAV/A12
 Date of birth
 03-May-78


 Patient:
 Test Patient
 Sex:
 Female

 Doctor:
 Dr......
 Sample date:
 03-Jan-12

Protocol: 35g of fructose diluted in 200ml of water.

Method: Hydrogen and methane values measured every 60 minutes for 180 minutes

Basal levels: Hydrogen = 5 ppm Methane = 1 ppm

Comments:

Results suggest fructose intolerance

Biolab (1/2)

Search Biolab Website Go
International Services ► Font Size Go
8:06 am UTC Tuesday May 15, 2018 (London)

Home

About Biolab

Clinicians

Patients

Tests

Test Forms

Appointments

Publications/Media

Contact Us

V A

Looking at Health from the Molecular to the Global

Patients

To arrange an appointment please telephone:

(+44) 020 7636 5959/5905

- Trace and Toxic Elements
- Water Soluble Vitamins
- Fat Soluble Vitamins
- Essential Fatty Acids
- Amino Acids
- Peptides
- Antioxidant Profile
- Nutritional Status
- Osteoporosis Profile
- Gut Fermentation
- Gut Permeability
- The same of the sa
- Allergy Tests
- · Health Risk Profile
- lodine and many more...

[click here to view full list of tests]

London W1W 6DB, UK Telephone: (+44) 020 7636 5959/5905

Email: reception@biolab.co.uk

QUICK LINKS

- Turnaround Times & Notifications
- Frequently Asked Questions
- Media and Education
- Appointments
- A-Z of Tests
- How to Find Us
- Join Our Mailing List
- Laboratory Guide
- Pathology Request Form
- · Hair Mineral Request Form
- Supplement Cautions

replacement blood toxic metals screening service (including cobalt and chromium

V A

FEATURES

- Order test kits here
- Clinicians can register here to refer patients for tests
- <u>Join our Mailing List</u> We encourage you to register on our mailing list in order to receive copies of Biolab newsletters and CPD approved workshop announcements.

NEWS

- Mobile phlebotomy service [PDF] A list of phlebotomists around the UK (and in Ireland) who can collect blood samples for Biolab tests can be found here.
- Mycotoxins Profile [PDF] Mycotoxins are some
 of the most prevalent toxins in the environment.
 They are metabolites produced by fungi like mould,
 which can infest...[more]
- . Metal on Metal hip replacements Biolab offers

mark@biolab.co.uk

Biolah Medical Unit

9 Weymouth Street,

The Stone House,

Have a list of phlebotomists around the country, too – useful!

Biolab (2/2): Huge range of nutritional and environmental tests

A-Z Listing of Biolab Tests

Acid phosphatase - prostatic

ADHD (and similar) Profile

ADHD (and similar) Profile - additional tests

Adrenal Profile & Metabolites (dried urine DUTCH)

Adrenal Profile (24hr urine) Adrenal Stress Profile (Saliva)

Albumin

Alcohol Excess Profile

Alkaline phosphatase - bone

Aluminium (Al) - blood

Aluminium (Al) - plasma

Aluminium (Al) - urine

Amino Acid Profile (6 or 24hr urine)

Anorexia Nervosa Profile

Anti-DNAse B

Antimony (Sb) - blood

Antimony (Sb) - urine

Antioxidant activity (total & nutritional)

Antioxidant Profile

Arsenic (As) - blood

Arsenic (As) - urine

Arthroplasty Blood Toxic Metal Profile

B vitamins (funtional bood profile)

Bariatric Surgery (post) - annual screening

Barium (Ba) - blood

Barium (Ba) - urine

Beryllium (Be) - blood

Beryllium (Be) - urine

Beta-cryptoxanthin

Bile Acids Total

Breath Hydrogen & methane (small intestinal bacterial overgrowth - SIBO)

Breath hydrogen & methane - Fructose intolerance

Breath hydrogen & methane - lactose intolerance

Burning Mouth/Mouth Ulceration Profile

Burning Mouth/Mouth Ulceration Profile - additional tests

C-Reactive Protein (CRP)

C.Difficile DNA - Stool

Cadmium (Cd) - urine

Cadmium(Cd) - blood

Caeruloplasmin

Calcium (Ca) - serum

Calcium (Ca) - urine

Candida Antibodies (IgG, IgM & IgA)

Cardiac Arrhythmias Profile

Cardiac Arrhythmias Profile - additional tests

Cardiac Failure Profile

Cardiac Failure Profile - additional tests

Carotenes (alpha and beta)

CFS/ME profile

CFS/ME profile - additional tests

Chromium (Cr) - blood

Chromium (Cr) - plasma

Chromium (Cr) - urine

Clostridium culture - stool

Cobalt (Co) - Blood

Cobalt (Co) - urine

Coeliac-Gluten Sensitivity Screen(GSA)

Coenzyme Q10

Comprehensive Parasitology (2 stool specimens)

Comprehensive Stool Analysis (without parasitology)

Comprehensive Stool Analysis with Parasitology (2 samples)

Comprehensive Stool Analysis with Parasitology (3 samples)

Copper (Cu) - plasma

Copper (Cu) - urine Copper Response Test

Coronary Heart Disease Profile

Coronary heart disease profile - additional tests

Creatinine - urine

D-Lactate

D-Xylose Absorption

Dementia profile

Dementia Profile - additional tests

DHEA-Sulphate

Diabetes profile

Diabetes profile - additional tests

Diamine Oxidase Activity (histamine intolerance)

DNA Methylation Panel

DNA Oxidative Damage (8-hydroxy-2'-deoxyguanosine)

Drug/nutrient interactions (severe) profile - additional tests

Drug/nutrient interactions profile (severe) Eye conditions (degenerative) profile

Eye conditions (degenerative) profile - additional tests

Fat soluble vitamin Profile

Fatty Acids - Erythrocytes (qualitative results only - see below)

Ferritin

Fibromyalgia profile

Fluoride - Tap water

Fluoride - urine

Folate (red cell)

Food allergy panel (IgE)

Food Sensitivity & Candida IgG Profile (95 foods)

Free T3 - Thyroid Free T4- Thyroid

Gamma Glutamyl Transferase

Glucose - Plasma

Glucose in plasma and GTTs

Glucose Tolerance test (2.5 hours)

Glucose Tolerance Test (5 hours)

Glutathione - red cells

Glutathione -S- transferase -serum

Glutathione Peroxidase

Glutathione reductase (RBC)

Glyphosate

Growth and Poor Appetite Profile

Growth and Poor Appetite Profile - additional tests

Gut Permeability profile

Haematology & Biochemistry

Haematology + biochemistry + lipids

Haematology Profile+ESR

<u>Haemogoblin</u>

Hair mineral & toxic elements

HbA1c- Glycosylated Haemoglobin

Health Risk Profile

Health Risk Profile - Extended

Helicobacter Pylori Breath Test

Hepatic Detox Profile

Histamine (plasma)

Histamine (urine)

Homocysteine - plasma

Hormone Profile - Complete (dried urine DUTCH)

Hormone Profile - sex hormones (24hr urine

Hormones - Comprehensive (includes sex & adrenal) (24hr urine)

Hormones - Comprehensive PLUS (includes thyroid) (24hr urine)

Hormones - Comprehensive PLUS with HGH(24hr urine)

Hormones and Thyroid Profile(serum)

IgE (total)

Immunoglobulins (IgG, IgA & IgM)

Indicans

Infections (recurrent or severe) Profile

Infections (recurrent or severe) Profile - additional tests

Infertility profile

Infertility profile - additional tests

Inflammatory Arthritis Profile

Inhalant allergy panel (IgE)

Iodine - urine Iodine: creatinine ratio (urine)

Histamine intolerance

- DAO
- MCAS/MCAD
- Gene testing: HDC/HNMT, etc.

Insufficient DAO = histamine intolerance

SPECIAL PATHOLOGY

Diamine Oxidase Activity

```
* 9.2 U/ml See below

< 3 : Histamine intolerance indicated

3 - 10 : Histamine intolerance probable

> 10 : Histamine intolerance improbable

Result from Referral Laboratory ID [900]. https://tdlpathology.com/
```

"Two major enzymes responsible for degradation of histamine: diamine oxidase (DAO) which regulates histamine extra-cellularly and Histamine-N-methyltransferase (HNMT) which regulates histamine intracellularly. When one or both of these enzymes are defective, histamine accumulates in the body"

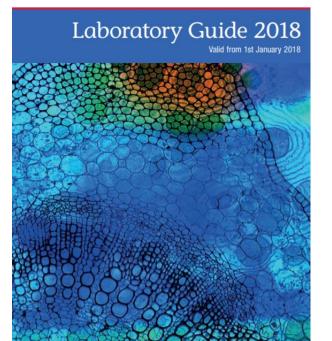
Maintz and Novak et al conclude that there appears to be a complex interaction between environmental factors, (<u>such as pathogens</u>, <u>medication</u> or alcohol), and/or other associated genetic defects (such as HNMT).

Allergy, 2011 Jul;66(7):893-902. doi: 10.1111/j.1398-9995.2011.02548.x. Epub 2011 Apr 13

Association of single nucleotide polymorphisms in the diamine oxidase gene with diamine oxidase serum activities.

Maintz L1, Yu CF, Rodríguez E, Baurecht H, Bieber T, Illig T, Weidinger S, Novak N.

https://www.aerzteblatt.de/pdf.asp?id=58066

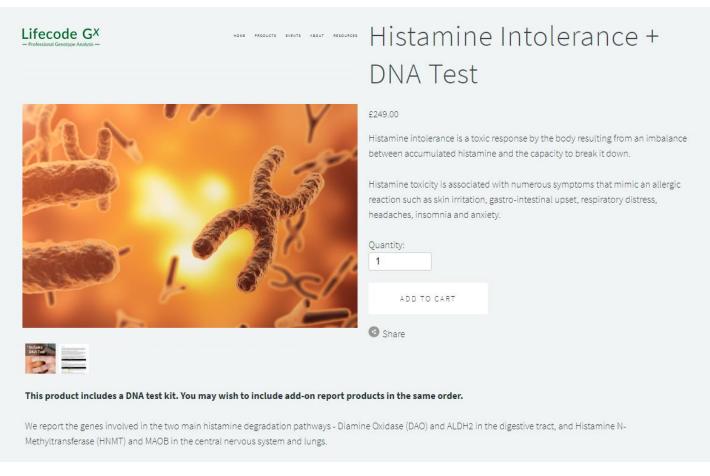

Testing for MCAS/MCAD*

Mast cells inappropriately and excessively releasing chemical mediators affecting the surrounding tissue: common symptoms: pruritus, flushing, nausea, vomiting, diarrhea, abdominal pain ...

Tryptase level – transient rise in serum tryptase Histamine

Random and 24-hr urinary N-methyl histamine, or histamine metabolites prostaglandin D2 & prostaglandin F2-alpha.

Serum chromogranin-A Heparin level



LABORATORY

^{*} Dr. Lawrence Afrin, author of "Never Bet Against Occam"

Lifecode gx for histamine intolerance genetic testing

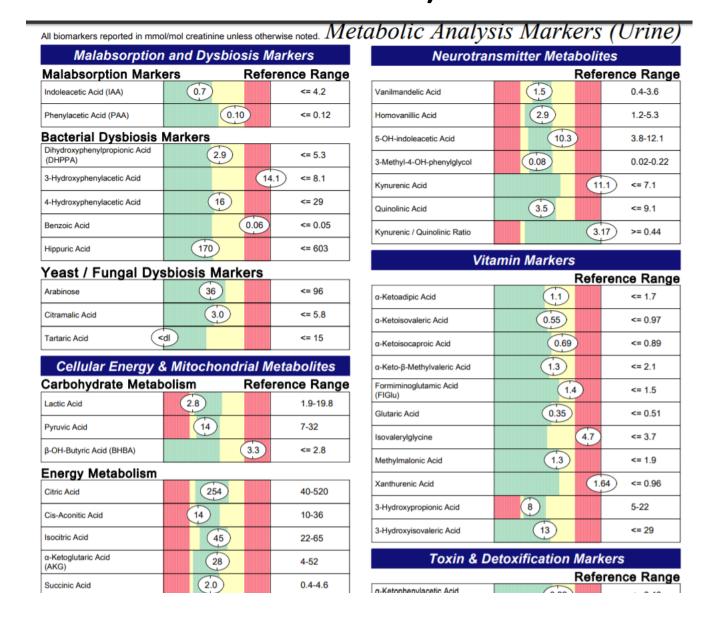
Histamine Intolerance Histamine Degradation Pathways Histidine Co-factor Protective - neutral Neutral - negative HDC (Histidine Negative decarboxylase) Histamine SAMe (Histamine N-DAO O methyltransferase) N-Methylhistamine **Imidazole** Acetaldehyde MAOB ALDH2 N-Methylimidazole **Imidazole** Aldehyde Acetic Acid

https://www.lifecodegx.com/products/histamine-intolerance

Multiple options for genetic testing now available

https://mthfrsupport.c
om/sterlings-app/

Liver Detox Phase I/II (etc.) all highly relevant to gut health

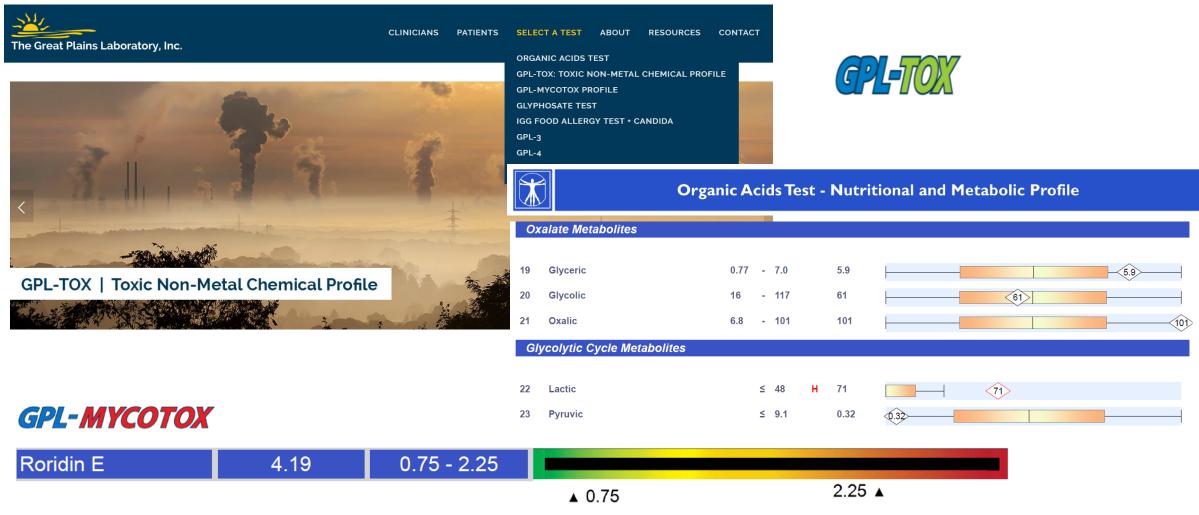

MTHFRSupport Variant Report v2

Liver Detox - Ph	ase II (Figure 1)		
SNP Name	Risk Allele	Your Alleles	Your Results
ABP1/DAO C1933G	G	CC	-/-
ABP1/DAO C47T	T	TT	+/+
ACAT1 G22670A	A	GG	-/-
ACE G2328A	G	GG	+/+
ADA A534G	G	TT	-/-
ADA C10783T	A	GG	-/-
ADA G22021A	С	CT	+/-
ADA G22A	T	CC	-/-
ADD1 G460W	T	TT	+/+
ADH1B A14973G	C	TT	-/-
ADH1B A178T	A	TT	-/-
ADH1B A19107G	C	TT	-/-
ADH1B A396C	A	GG	-/-
ADH1B A5998G	C	CT	+/-
ADH1B A7571G	C	TT	-/-
ADH1B A8575G	C	TT	-/-
ADH1B C8282A	T	GG	-/-
ADH1B C9160T	À	GG	-/-
ADK G509567T	T	GT	+/-
AGT M235T/C4072T	G	AG	+/-
AHCY-01 G14905A	C	CT	+/-
AMT T5998G	Ċ	CC	+/+
APOC3 3u386	G	CC	-/-
APOC3 G34G	Ť	CT	+/-
BHMT A7961G	G	AG	+/-
BHMT R239Q	A	GG	-/-
BHMT-02 C13813T	Ť	CC	-/-
BHMT-08 C6457T	Ť	CT	+/-
CAT A12175G	Ğ	AG	+/-
CAT C14185T	Ť	CC	-/-
CAT C21068T	Ť	CC	-/-
CAT T5070C	Ċ	CC	+/+
COMT/TXNRD2 A4251G	Č	TT	-/-
COMT/TXNRD2 C4622T	Ť	CC	-/-
COMT/TXNRD2 T4239C	Ğ	AA	-/-
DAO A14747C	C	AC	+/-
DAO A24464G	Ğ	AA	-/-
DAO G8864A	A	GG	-/-
DAO/ABP1 C995T	Ť	CC	-/-
DHFR A16352G	Ċ	CC	+/+
DHFR A20965G	Č	CC	+/+
DHFR C19483A	Ť	TT	+/+
DHFR/MSH T-473A	Ä	GG	-/-
DISC1 C14853T	- ĉ	CT	+/-
DISCT 0140331		Ų,	-1-

Organic Acid Tests

- Genova
- Great Plains Laboratory (GPL)

Genova's Organic Acids Test (MAP, also incorporated into NutrEval)



Great Plains (GPL) Organic Acids Test The Great Plains Laboratory, Inc.

Requis	William Shaw, Ph.D., Directorition #:	or 11813	We	st 77th S	Street,	Lenexa, F	(S 66214 (913) 341- Physician:	-8949 Fax (913) 341-6207
	Name:						Date of Collection:	4/21/2015
Patient	Age: 52						Time of Collection:	04:30 AM
Patient	Sex: F						Print Date:	04/29/2015
		Organic A	cic	ls Te	st -	Nutr	tional and M eta	bolic Profile
Metab	oolic Markers in Urine	Reference R (mmol/mol crea				atient /alue	Reference Po	pulation - Females Age 13 and Over
Inte	estinal Microbial Overgro	owth						
	and Fungal Markers						•	
1	Citramalic		≤	3.6		0.90	€.90	
2	5-Hydroxymethyl-2-furoic		≤	14		5.4		(5.4)
3	3-Oxoglutaric		≤	0.33		0	4.00	
4	Furan-2,5-dicarboxylic		≤	16		10		10
5	Furancarbonylglycine		≤	1.9		0.88		₫.8₺
6	Tartaric		≤	4.5		1.5	<	.5
7	Arabinose		≤	29	н	88		88>
8	Carboxycitric		≤	29		0.36	€ 3 €	
9	Tricarballylic		≤	0.44		0.33		-033
Bacter	rial Markers							·
10	Hippuric		≤	613	н	622	622	
11	2-Hydroxyphenylacetic	0.06		0.66		0.55		4.55
12	4-Hydroxybenzoic		≤	1.3		1.0		(1.0)
13	4-Hydroxyhippuric	0.79		17		8.2		8.2
14	DHPPA (Beneficial Bacteria)		≤	0.38		0.21		(.2)
Clostr	idia Bacterial Markers							-
15 (C. diffi	4-Hydroxyphenylacetic icile, C. stricklandii, C. litusebure	nse & others)	≤	19	н	25	25	>
16	HPHPA progenes, C. caloritolerans, C. bot		≤	208	н	271		>
17	4-Cresol	aa outers/	≤	75		42		(42)
(C. diffi	iciie)					2.8	_	

Metabolic Markers in Urine	Reference Range (mmol/mol creatinine)	Patient Value	Reference Population - Females Age 13 and Over				
Oxalate Metabolites							
19 Glyceric	0.77 - 7.0	5.9	£\$				
20 Glycolic	16 - 117	61	61				
21 Oxalic	6.8 - 101	101					
Glycolytic Cycle Metabolit	tes						
22 Lactic	≤ 48	H 71	□ → ��				
23 Pyruvic	≤ 9.1	0.32	(3)				
Mitochondrial Markers - K	rebs Cycle Metabolite	es	•				
24 Succinic	≤ 9.3	1.8	18				
25 Fumaric	≤ 0.94	4 0.24	(2)				
26 Malic	0.06 - 1.8	0.48	48				
27 2-Oxoglutaric	≤ 35	5.9	5.9				
28 Aconitic	6.8 - 28	L 4.3	43				
29 Citric	≤ 507	95	95				
Mitochondrial Markers - A	Amino Acid Metabolite	es					
30 3-Methylglutaric	≤ 0.76	6 0.20					
31 3-Hydroxyglutaric	≤ 6.2	2.6	(28)				
32 3-Methylglutaconic	≤ 4.5	1.1					
Neurotransmitter Metaboli	ites		<u> </u>				
Phenylalanine and Tyrosine Metab	oolites						
33 Homovanillic (HVA) (dopamine)	0.80 - 3.6	1.6	18				
34 Vanillylmandelic (VMA) (norepinephrine, epinephrine)	0.46 - 3.7	1.5	(15)				
35 HVA / VMA Ratio	0.16 - 1.8	1.1					
Tryptophan Metabolites 36 5-Hydroxyindoleacetic (5-H)	100)	1.0					
(serotonin)			1.0				
37 Quinolinic	0.85 - 3.9	1.6	1.6				
38 Kynurenic	0.17 - 2.2	0.82	(8)				
39 Quinolinic / 5-HIAA Ratio	0.42 - 2.0	1.5	(15)				

Biolab also key hub for Great Plains Laboratories (GPL)

Roridin E (ROE) is a macrocyclic trichothecene produced by the mold species Fusarium, Myrothecium, and Stachybotrys (i.e. black mold). Trichothecenes are frequently found in buildings with water damage but can also be found in contaminated grain. This is a very toxic compound, which inhibits protein biosynthesis by preventing peptidyl transferase activity. Trichothecenes are considered extremely toxic and have been used as biological warfare agents. Even low levels of exposure to macrocyclic trichothecenes can cause severe neurological damage, immunosuppression, endocrine disruption, cardiovascular problems, and gastrointestinal distress. Treatment measures are often aimed at the prevention of their absorption. Nebulized and intranasal ...

Bacterial/viral infections

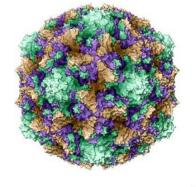
- Enterobacteria
- Enteroviruses

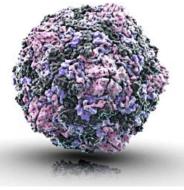
Enterobacteria/enteroviruses

Enteroviruses:

Enteroviruses belong to the family of picorna viruses. They consist of 23 subspecies of Coxsackie-A-viruses, 6 Coxsackie-B-viruses and 31 Echovirus and other enteroviruses. Humans are the only virus reservoir. Enteroviruses particularly cause feverish diseases of the respiratory organs and the gastrointestinal tract, also the Norovirus

Coxsackie IgG-/IgA-antibodies


The specific Coxsackie-Virus Type A7/B1-IgG-/IgA-antibodies indicate current humoral immune response against Coxsackie-Virus Type A7 and Coxsackie-Virus Type B1. The test system is highly specific for Coxsackie Virus antibodies. Other Enterovirus antibodies (f.e. Echovirus antibodies) are not detectable.


BMJ. 1991 Mar 23;302(6778):692-6.

Enteroviral RNA sequences detected by polymerase chain reaction in muscle of patients with postviral fatigue syndrome.

Gow JW¹, Behan WM, Clements GB, Woodall C, Riding M, Behan PO.

← Can later develop into ME/CFS-type conditions

Yersinia enterocolitica

ArminLabs GmbH

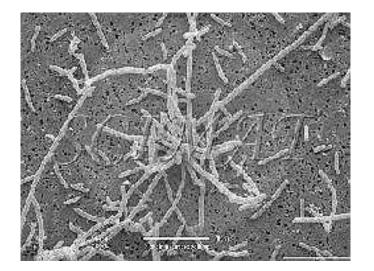
Page: 4 of 5

ArminLabs GmbH - Zirbelstr.58 3rd floor, 86154 Augsburg, Germany

Patient: M

Date of birth: Date of Reception: Date of Report: Barcode-ID: Physician:

09/11/2017 09/13/2017


Yersinia EliSpot

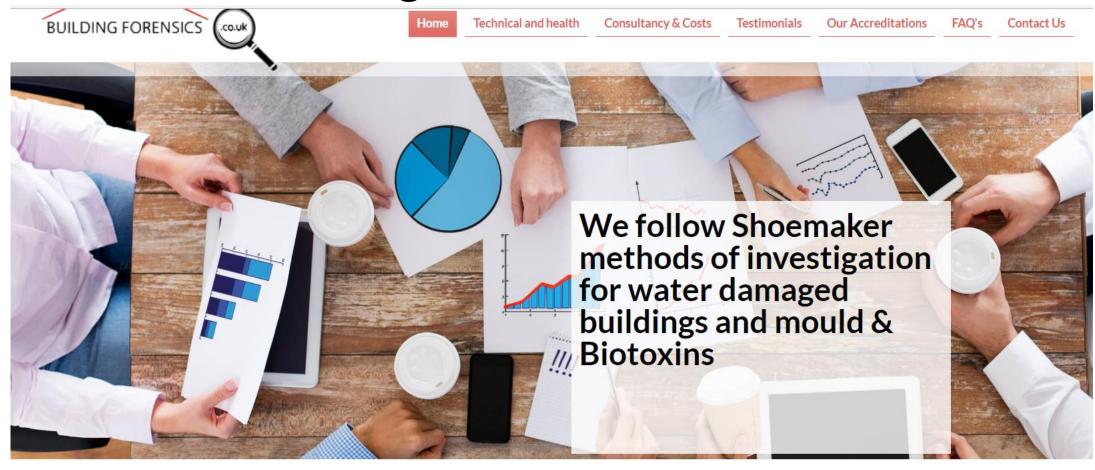
Yersinia-EliSpot + 34

>3 = positive

2-3 = weak positive

<2 = negative

Yersinia enterocolitica is an enteropathic bacterium. It penetrates the intestinal wall and the mesenteric lymph nodes. Several ectoparasites including ticks have been found to be infected with Yersinia – the most common vectors are rodents and fleas.


Testing for bacterial and viral infections (also tick-borne) at Arminlabs via

https://aonm.org/

03331 210 305 info@aonm.org

Building forensics - http://buildingforensics.co.uk/

CEO Jeff Charlton

Geobiological investigation/EMF protection

https://beneficialenvironments.co.uk/

Academy for Radiation Protection and Environmental Medicine | support@geovital.com

MAKING THE CONNECTION
ELECTROMAGNETICS AND WELLBEING

Enjoy the benefits and cut the pollution

	Want to know more?
Comp	ete this simple form, and receive a free E-book, 'How to Reduce your Everyday Electromagnetic Pollution'.
Name	
Email	

f 🔊 💆 🖪 🖂 💳

https://en.geovital.com/

Supplement suppliers

The Natural Dispensary https://naturaldispensary.co.uk/

NATURAL DISPENSARY

T: 01453 757792

Register

Login

Free Delivery

Nutritional Supplement Mail Order for Practitioners and their Clients. All Under One Roof...

 \sim 450 brands

> 11,000 products

All UK orders over £25 are delivered free of charge. There is a £2 post and packaging fee on

EXPRES!

Discount for the doctor/therapist: 33%

For your patients: Whatever discount you choose, up to 25%

DISPENSARY

Home

Contact

Register with The Natural Dispensary or <u>Login</u>

Search for your prescribed products, or Browse by **Brand**

3

Purchase securely online at the Checkout

> UK orders under £25. Q We Accept

Secured by PayPal

☐ Trustwave rusted Commerce Click to Validate

Browse by Brands Click for A brands 📥 A Vogel (BioForce) Acadian Maple Click for B brands + **Bach Flower Remedies** Balance Activ Click for C brands 📥 Canabidol Cariad Coffee

Enter Brand Search Product Name or Code

Brands Stocked

Nature's Plus The Energy Supplements

Products in the News

Daily Cultures

Dead Sea Spa Magik it Rok-807-1.html

Click for D brands 📥

Supplements: examples

https://www.salesatdrmyhill.co.uk

https://www.solgar.co.uk/

https://www.nutriadvanced.co.uk/

http://www.viridiannutrition.com/

https://www.nutri-link.co.uk/

Amrita Nutrition (1/2) - https://www.amritanutrition.co.uk/

We were previously Functional Nutrition Supplements. We've re-branded and launched our new site, we hope you enjoy using it! X Call +44 114 235 7845 9am - 5pm GMT Mon - Fri **About us** Contact Advanced search amrita nutrition ♣ Practitioner recommended Fast delivery from the UK High quality Shop by: Condition Search for products here... Category Brand Login Basket (0) Welcome to Amrita Nutrition. We supply superior nutrition supplements for optimal health & wellbeing. USE OUR ADVANCED PRODUCT SEARCH

Amrita Nutrition (2/2)

amrita			Call +44 11	14 235 7845 9am - 5pm GMT Mon	out us Contact Advanced s	s Contact Advanced search		
nutrition			High qua	ulity 🏠 Practitioner rec	Fast delivery from the UK			
Shop by: Category ~	Brand ∨	Condition ∨ Search for	r products here	<u></u>		Login Basl	ket(0)	
Adrenal		Epsom Salts		Kidney and Urinary Support	+	Protein Powders, Bone Broths and Functional Foods		
Antimicrobial	+	Essential Fatty Acids		Kinesiology Testing Kit		Researched Nutritionals	+	
Bone Health		Eye Support		Liver and Biliary Tree Support	+	Search By Condition	+	
Books Cardiovascular Support	+	Fertility Fibre		Liver Detoxification Metabolic Support	+	Skin Support		
Cellular Support	+	Gastrointestinal Support	+	Minerals	+	Systemic Enzymes		
Circulatory Support		Heavy Metal Detoxification		Nerve Support	+	Tickets Vitamin and Mineral Formulas		
Cognitive Support	+	Hormonal Support	+	Neurotransmitter Support	+	Vitamins	+	
Connective Tissue		Immune Support	+	Oral Support		Clearance		
Dr Wentz Recommended Products		John Masters	+	Oxalates				
Electrolytes		Joint		Prostate Support				
Energy Support	+	Joint, Tendon and Ligament Support	+	Protein Powders				

Yourhealthbasket, aka Detoxpeople -

Email us now: sales@doctormyhill.co.uk

Search our products...

SHOPPING CART 0 item (s) - £0.00

The Basic Package

What we should all be taking to live to our full potential!

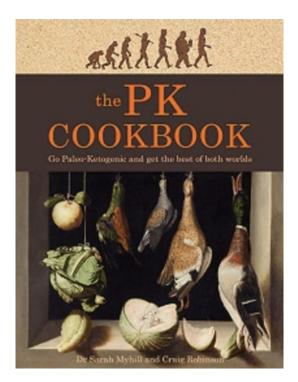
9

CATEGORIES

FEATURED PRODUCTS

- A Z of Products
- Special Offers & Packages
- Antioxidants
- The Basic Package what we should all be taking to live to our full potential!
- Dr Myhill's Books
- Fermenting gut products
- Improving energy -mitochondrial, adrenal and thyroid support
- Infections avoid and treat aggressively
- Low blood sugar (hypoglycaemia)
- > Maximising brain function
- Muscles, joints and bones

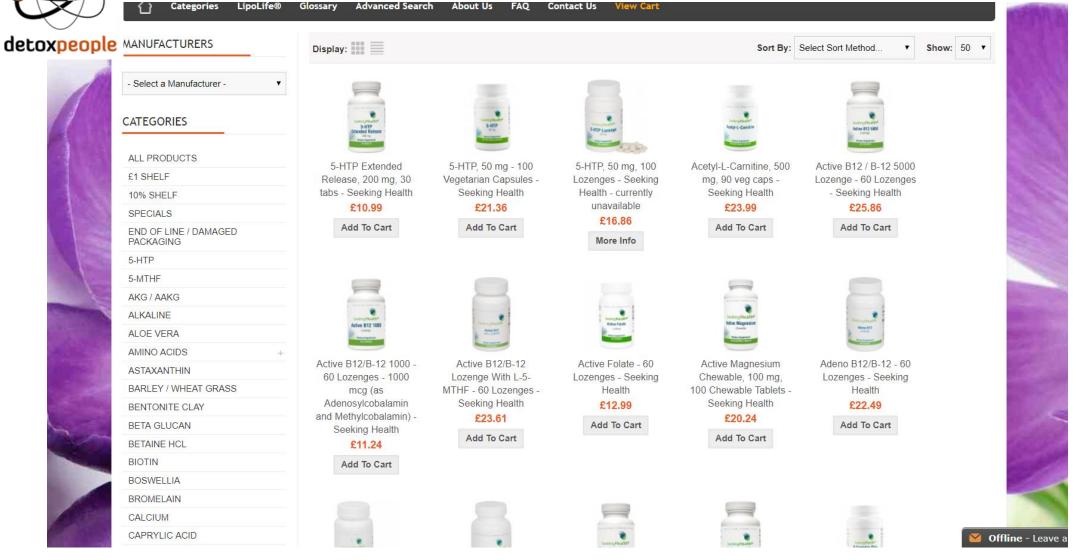
acid. 1x Zinc Plus. 1x Selenium


A FLU PACKAGE - (1X Ascorbic A May Madness Special Offer -Buy 1 x Multi-Mineral Mix

SAL LESSAY ES

B12 Oral Spray 25 ml

https://www.salesatdrmyhill.co.uk



Seeking Health

https://www.seekinghealth.com/

Metabolics

Very pure (no adjuvants), most in liquid form http://www.metabolics.com/

Pure Encapsulations – hypoallergenic

Products

Education

Quality

About

How To Buy ightarrow

Now available from Amrita Nutrition

SCIENCE + INSIGHT

A clinical laboratory providing innovative, accurate specialty testing since 1972.

Thank you very much!

